metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)terbium(III)]-μ-pyridine-2,6-dicarboxylato] tetrahydrate]

Lu-Jiang Hao* and Tong-Li Yu

College of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China Correspondence e-mail: lujianghao001@yahoo.com.cn

Received 11 July 2007; accepted 16 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.011 Å; *R* factor = 0.042; *wR* factor = 0.131; data-to-parameter ratio = 11.0.

The title compound, $[Tb(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_2]$ -4H₂O, is isostructural with its La³⁺, Ce³⁺, Pr³⁺, Nd³⁺, Sm³⁺ and Gd³⁺ analogues. The Tb³⁺ ion is nine-coordinated by two O and one N atoms from a tridentate 6-carboxypyridine-2-carboxylate ligand, two O and one N atoms from a tridentate pyridine-2,6-dicarboxylate ligand, one O atom belonging to a neighbouring pyridine-2,6-dicarboxylate ligand, and two water molecules. The bridging pyridine-2,6-dicarboxylate ligand gives rise to infinite chains. The crystal structure involves $O-H \cdots O$ hydrogen bonds.

Related literature

The isostructural lanthanide compounds are those with La³⁺ (Guerriero *et al.*, 1987; Ghosh & Bharadwaj, 2005), Ce³⁺ (Okabe *et al.*, 2002; Ghosh & Bharadwaj, 2003; Rafizadeh *et al.*, 2005; Ramezanipour *et al.*, 2005), Pr³⁺ (Ghosh & Bharadwaj, 2003; Zhao *et al.*, 2005), Nd³⁺ (Miao *et al.*, 1992), Sm³⁺ (Liu *et al.*, 2005, 2006; Rafizadeh *et al.*, 2005; Song *et al.*, 2005), Eu³⁺ (Brayshaw *et al.*, 2005) and Gd³⁺ (Hao & Yu, 2007).

Experimental

Crystal data

$10(C_7\Pi_3 NO_4)(C_7\Pi_4 NO_4)(\Pi_2 O_2)^{-1}$
4H ₂ O
$M_r = 598.24$
Monoclinic, $P2_1/c$
a = 13.9986 (3) Å
b = 11.3819 (2) Å
c = 12.8982 (2) Å

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.715, T_{max} = 0.715$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.131$
S = 1.00
3499 reflections
317 parameters
189 restraints

 $\beta = 102.0126 (10)^{\circ}$ $V = 2010.08 (6) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 3.60 \text{ mm}^{-1}$ T = 293 (2) K $0.10 \times 0.10 \text{ x} 0.10 \text{ mm}$

7168 measured reflections 3499 independent reflections 3237 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 1.20 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -2.00 \text{ e } \text{ Å}^{-3}$

Table 1		
Hydrogen-bond geom	etry (Å	, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H1W\cdots O11^{i}$	0.81 (6)	2.08 (5)	2.743 (7)	138 (7)
$O6 - H3W \cdot \cdot \cdot O1^{n}$	0.81(8)	1.97 (4)	2.714 (7)	154 (9)
$O11-H5W\cdots O7^{iii}$	0.81(10) 0.80(11)	2.05(7) 2.15(11)	2.913 (7)	140(11) 159(11)
$O11 - H6W \cdots O8^{iv}$	0.81 (10)	2.10 (10)	2.893 (7)	167 (13)
$O14 - H9W \cdots O11^{v}$	0.810 (12)	2.15 (4)	2.926 (8)	159 (11)
$O14 - H10W \cdot \cdot \cdot O8^{VI}$	0.81 (9)	1.92 (9)	2.690 (7)	157 (11)
04-H4···013 ^{***}	0.82	1./4	2.522 (12)	160

Symmetry codes: (i) x, y, z + 1; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (iv) -x + 2, -y + 2, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (vii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2026).

References

- Brayshaw, P. A., Hall, A. K., Harrison, W. T. A., Harrowfield, J. M., Pearce, D., Shand, T. M., Skelton, B. W., Whitaker, C. R. & White, A. H. (2005). *Eur. J. Inorg. Chem.* pp. 1127–1167.
- Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ghosh, S. K. & Bharadwaj, P. K. (2003). Inorg. Chem. 42, 8250-8261.
- Ghosh, S. K. & Bharadwaj, P. K. (2005). Inorg. Chem. 44, 3156-3162.
- Guerriero, P., Casellato, U., Sitran, S., Vigato, P. & Graziani, R. (1987). *Inorg. Chim. Acta*, **133**, 337–339.
- Hao, L.-J. & Yu, T.-L. (2007). Acta Cryst. E63, m1967.
- Liu, S.-H., Li, Y.-Z. & Meng, Q.-J. (2005). Acta Cryst. E61, m1111-m1113.

- Liu, Y., Dou, J.-M., Wang, D.-Q., Zhang, X.-X. & Zhou, L. (2006). Acta Cryst. E62, m2794-m2795.
- Miao, F., Wang, J., Jin, T., Liu, J., Zhang, H. & Huang, C. (1992). Chin. J. Inorg. Chem. 8, 180-186.
- Okabe, N., Kyoyama, H. & Fujimoto, A. (2002). Acta Cryst. E58, m354m356.
- Rafizadeh, M., Amani, V., Iravani, E. & Neumuller, B. (2005). Z. Anorg. Allg. Chem. 631, 952–934.
- Ramezanipour, F., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Stoeckli-Evans, H., Soleimannejad, J. & Sheshmani, S. (2005). J. Mol. Struct. 779, 77-92.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Song, Y., Yan, B. & Chen, Z. (2005). *J. Mol. Struct.* **750**, 101–107. Zhao, B., Yi, L., Dai, Y., Chen, X., Cheng, P., Liao, D., Yan, S. & Jiang, Z. (2005). Inorg. Chem. 44, 911-926.

Acta Cryst. (2007). E63, m2182-m2183 [doi:10.1107/S1600536807034629]

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)terbium(III)]-µ-pyridine-2,6-di-carboxylato] tetrahydrate]

L.-J. Hao and T.-L. Yu

Comment

The title compound is isostructural those with its La^{3+} (Guerriero *et al.*, 1987; Ghosh & Bharadwaj, 2005), Ce³⁺ (Okabe *et al.*, 2002; Ghosh & Bharadwaj, 2003; Rafizadeh *et al.*, 2005; Ramezanipour *et al.*, 2005), Pr³⁺ (Ghosh & Bharadwaj, 2003; Zhao *et al.*, 2005), Nd³⁺ (Miao *et al.*, 1992), Sm³⁺ (Liu *et al.*, 2005, 2006; Rafizadeh *et al.*, 2005; Song *et al.*, 2005), Eu³⁺ (Brayshaw *et al.*, 2005) and Gd³⁺ (Hao & Yu, 2007) analogues.

The Tb^{3+} ion is nine-coordinated by four O and two N atoms from two independent tridentate pyridine-2,6-dicarboxyate ligands, one O atom belonging pyridine-2,6-dicarboxylate ligand and two water molecules (Fig. 1). The bridging pyridine-2,6-dicarboxylate ligand gives rise to infinite chains along the *c*-axis (Fig. 2). An extensive network of hydrogen bonds exists between water molecules.

Experimental

A mixture of Tb(NO₃)₃ (0.5 mmol), Sodium hydroxide(0.5 mmol), pyridine-2,6-dicarboxylic acid (0.5 mmol), H₂O (8 ml) and ethanol (8 ml) in a 25 ml teflon-lined stainless steel autoclave was kept at 433 K for three days. Colorless crystals were obtained after cooling to room temperature with a yield of 36%. Anal. Calc. for $C_{14}H_{19}N_2O_{14}Tb$: C 28.09, H 3.18, N 4.68%; Found: C 28.01, H 3.23, N 4.61%.

Refinement

The H atoms of the water molecules were located from difference density maps and were refined with distance restraints of $d(H \cdots H) = 1.38$ (2) Å and d(O-H) = 0.82 (2) Å. All other H atoms were placed in calculated positions with a C–H bond distance of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound showing 30% probability displacement ellipsoids. H atoms shown as spheres of arbitrary radius. Atom O10i is generated by the symmetry code: (x, -y + 3/2, z + 1/2).

Fig. 2. Part of an infinite chain running along the *c*-axis. H atoms omitted for clarity.

catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)terbium(III)]-µ- pyridine-2,6-dicarboxylato] tetrahy-drate]

 $D_{\rm x} = 1.977 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

Cell parameters from 3499 reflections

 $F_{000} = 1176$

 $\theta = 1.5 - 25.0^{\circ}$ $\mu = 3.60 \text{ mm}^{-1}$ T = 293 (2) K

Cube, colourless

 $0.10 \times 0.10 \times 0.10 \text{ mm}$

Crystal data	
$[Tb(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)_2] \cdot 4H_2O$ $M_r = 598.24$	
Monoclinic, $P2_1/c$	
Hall symbol: -P 2ybc	
a = 13.9986 (3) Å	
b = 11.3819 (2) Å	
c = 12.8982 (2) Å	

 $\beta = 102.0126 (10)^{\circ}$ $V = 2010.08 (6) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer	3499 independent reflections
Radiation source: fine-focus sealed tube	3237 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 293(2) K	$\theta_{\text{max}} = 25.2^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -16 \rightarrow 16$
$T_{\min} = 0.715, \ T_{\max} = 0.715$	$k = -13 \rightarrow 13$
7168 measured reflections	$l = -7 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0953P)^2 + 13.066P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3499 reflections	$\Delta \rho_{max} = 1.20 \text{ e } \text{\AA}^{-3}$
317 parameters	$\Delta \rho_{\rm min} = -2.00 \ e \ {\rm \AA}^{-3}$

Extinction correction: none

189 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.5673 (6)	0.5764 (8)	0.8725 (7)	0.0353 (9)
C2	0.5029 (6)	0.6849 (8)	0.8698 (7)	0.0358 (8)
C3	0.4056 (6)	0.6786 (8)	0.8673 (7)	0.0363 (8)
H3	0.3749	0.6062	0.8679	0.044*
C4	0.3521 (7)	0.7840 (7)	0.8636 (8)	0.0369 (8)
H4A	0.2852	0.7815	0.8610	0.044*
C5	0.3989 (6)	0.8910 (8)	0.8638 (7)	0.0364 (8)
Н5	0.3648	0.9614	0.8617	0.044*
C6	0.4975 (6)	0.8894 (8)	0.8671 (7)	0.0360 (8)
C7	0.5573 (6)	0.9998 (8)	0.8682 (7)	0.0358 (9)
C8	0.8806 (5)	1.0253 (6)	0.8263 (5)	0.0179 (7)
C9	0.8732 (5)	1.0388 (6)	0.9408 (5)	0.0176 (6)
C10	0.9082 (5)	1.1397 (6)	1.0001 (5)	0.0180 (6)
H10	0.9344	1.2028	0.9696	0.022*
C11	0.9018 (5)	1.1406 (6)	1.1065 (5)	0.0182 (6)
H11	0.9247	1.2050	1.1488	0.022*
C12	0.8619 (5)	1.0469 (6)	1.1489 (5)	0.0178 (6)
H12	0.8585	1.0464	1.2201	0.021*
C13	0.8264 (5)	0.9519 (6)	1.0829 (5)	0.0175 (6)
C14	0.7743 (5)	0.8473 (6)	1.1189 (5)	0.0173 (7)
H1W	0.909 (4)	0.718 (4)	0.987 (5)	0.080*
H2W	0.863 (3)	0.612 (4)	0.952 (8)	0.080*
H3W	0.595 (6)	0.899 (7)	0.672 (3)	0.080*
H4W	0.665 (8)	0.841 (10)	0.629 (6)	0.080*
H5W	0.924 (8)	0.676 (10)	0.190 (8)	0.080*
H6W	0.988 (9)	0.753 (7)	0.158 (9)	0.080*
H7W	0.788 (10)	0.465 (5)	0.888 (8)	0.080*
H8W	0.791 (12)	0.397 (10)	0.977 (5)	0.080*
H9W	0.023 (10)	0.4869 (17)	0.898 (8)	0.080*
H10W	0.038 (10)	0.589 (8)	0.847 (5)	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H11W	0.608 (9)	0.300 (12)	0.826 (4)	0.080*
H12W	0.674 (6)	0.238 (11)	0.899 (9)	0.080*
N1	0.5474 (5)	0.7881 (5)	0.8674 (5)	0.0201 (13)
N2	0.8315 (4)	0.9488 (4)	0.9813 (4)	0.0111 (10)
01	0.5308 (4)	0.4780 (5)	0.8764 (5)	0.0400 (15)
O2	0.6558 (4)	0.5971 (4)	0.8704 (4)	0.0227 (10)
O3	0.6432 (4)	0.9921 (4)	0.8649 (4)	0.0257 (11)
O4	0.5122 (5)	1.0991 (5)	0.8733 (6)	0.0464 (16)
H4	0.5471	1.1535	0.8619	0.070*
O5	0.8754 (4)	0.6841 (5)	0.9368 (4)	0.0255 (11)
O6	0.6333 (4)	0.8452 (6)	0.6743 (4)	0.0372 (15)
07	0.8449 (4)	0.9295 (4)	0.7819 (3)	0.0224 (10)
O8	0.9207 (4)	1.1044 (5)	0.7853 (4)	0.0303 (12)
O9	0.7268 (4)	0.7815 (4)	1.0468 (4)	0.0175 (10)
O10	0.7813 (4)	0.8336 (4)	1.2163 (3)	0.0200 (10)
O11	0.9581 (4)	0.6919 (5)	0.1491 (4)	0.0251 (12)
012	0.7991 (8)	0.4014 (7)	0.9163 (9)	0.086 (3)
O13	0.6236 (7)	0.2750 (8)	0.8855 (10)	0.082 (3)
O14	0.0299 (5)	0.5576 (5)	0.9011 (4)	0.0338 (13)
Tb1	0.73015 (2)	0.79481 (3)	0.85156 (2)	0.01780 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0230 (18)	0.039 (2)	0.044 (2)	0.0056 (14)	0.0088 (15)	0.0012 (15)
C2	0.0236 (17)	0.0396 (19)	0.0450 (19)	0.0060 (13)	0.0087 (14)	0.0012 (14)
C3	0.0239 (17)	0.0399 (19)	0.0458 (19)	0.0059 (13)	0.0087 (14)	0.0013 (14)
C4	0.0242 (17)	0.0403 (19)	0.0469 (19)	0.0061 (13)	0.0086 (14)	0.0012 (14)
C5	0.0241 (17)	0.0399 (19)	0.0456 (19)	0.0064 (13)	0.0086 (14)	0.0011 (14)
C6	0.0239 (17)	0.0396 (19)	0.0451 (19)	0.0063 (13)	0.0087 (14)	0.0010 (14)
C7	0.0241 (18)	0.039 (2)	0.045 (2)	0.0065 (14)	0.0085 (15)	0.0007 (15)
C8	0.0207 (15)	0.0176 (14)	0.0149 (14)	-0.0021 (12)	0.0024 (12)	-0.0008 (12)
C9	0.0205 (13)	0.0172 (13)	0.0146 (13)	-0.0022 (11)	0.0024 (10)	-0.0009 (10)
C10	0.0209 (13)	0.0175 (13)	0.0149 (13)	-0.0024 (11)	0.0023 (10)	-0.0009 (10)
C11	0.0212 (14)	0.0176 (13)	0.0150 (13)	-0.0024 (11)	0.0019 (10)	-0.0011 (11)
C12	0.0208 (13)	0.0174 (13)	0.0146 (13)	-0.0024 (11)	0.0022 (10)	-0.0009 (10)
C13	0.0204 (13)	0.0172 (13)	0.0145 (13)	-0.0022 (11)	0.0024 (10)	-0.0008 (10)
C14	0.0201 (15)	0.0170 (14)	0.0142 (14)	-0.0023 (12)	0.0026 (12)	-0.0006 (12)
N1	0.018 (3)	0.026 (3)	0.015 (3)	-0.002 (2)	0.001 (2)	-0.001 (2)
N2	0.011 (2)	0.013 (3)	0.010 (2)	-0.0026 (19)	0.0016 (18)	-0.0017 (19)
01	0.030 (3)	0.021 (3)	0.065 (4)	-0.013 (2)	0.003 (3)	0.002 (3)
O2	0.020 (2)	0.017 (2)	0.031 (3)	-0.0016 (19)	0.004 (2)	-0.002 (2)
03	0.027 (3)	0.017 (2)	0.032 (3)	0.007 (2)	0.002 (2)	-0.003 (2)
O4	0.048 (4)	0.029 (3)	0.060 (4)	0.015 (3)	0.008 (3)	-0.004 (3)
O5	0.026 (3)	0.035 (3)	0.013 (2)	0.007 (2)	-0.002 (2)	-0.005 (2)
O6	0.041 (3)	0.056 (4)	0.012 (2)	0.033 (3)	0.000 (2)	0.001 (2)
07	0.035 (3)	0.022 (2)	0.012 (2)	-0.011 (2)	0.010 (2)	-0.0040 (18)
08	0.047 (3)	0.025 (3)	0.023 (3)	-0.016 (2)	0.017 (2)	0.000 (2)

O9 0.021 (2) 0.021 (2) 0.009 (2) -0.0107 (18) 0.0010 (18) -0.0008 (17) O10 0.027 (3) 0.021 (2) 0.010 (2) -0.008 (2) 0.0006 (19) 0.0020 (19) O11 0.026 (3) 0.030 (3) 0.018 (3) -0.003 (2) 0.003 (2) 0.000 (2) O12 0.069 (6) 0.039 (4) 0.135 (9) 0.014 (4) -0.014 (7) 0.000 (5) O13 0.068 (6) 0.044 (5) 0.128 (10) 0.003 (4) 0.008 (6) 0.003 (5) O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11))
O10 0.027 (3) 0.021 (2) 0.010 (2) -0.008 (2) 0.0006 (19) 0.0020 (19) O11 0.026 (3) 0.030 (3) 0.018 (3) -0.003 (2) 0.003 (2) 0.000 (2) O12 0.069 (6) 0.039 (4) 0.135 (9) 0.014 (4) -0.014 (7) 0.000 (5) O13 0.068 (6) 0.044 (5) 0.128 (10) 0.003 (4) 0.008 (6) 0.003 (5) O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
O11 0.026 (3) 0.030 (3) 0.018 (3) -0.003 (2) 0.003 (2) 0.000 (2) O12 0.069 (6) 0.039 (4) 0.135 (9) 0.014 (4) -0.014 (7) 0.000 (5) O13 0.068 (6) 0.044 (5) 0.128 (10) 0.003 (4) 0.008 (6) 0.003 (5) O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
O12 0.069 (6) 0.039 (4) 0.135 (9) 0.014 (4) -0.014 (7) 0.000 (5) O13 0.068 (6) 0.044 (5) 0.128 (10) 0.003 (4) 0.008 (6) 0.003 (5) O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
O13 0.068 (6) 0.044 (5) 0.128 (10) 0.003 (4) 0.008 (6) 0.003 (5) O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
O14 0.048 (4) 0.029 (3) 0.030 (3) 0.010 (3) 0.022 (3) 0.001 (2) Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
Tb1 0.0184 (3) 0.0198 (3) 0.0146 (2) -0.00110 (11) 0.00191 (15) -0.00124 (11)	
	1)
Geometric parameters (Å, °)	
C1O1 1.237 (10) C13C14 1.518 (9)	
C1-O2 1.267 (10) $C14-O10$ 1.249 (8)	
C1-C2 1.525 (11) C14-O9 1.269 (8)	
C2—N1 1.332 (11) N1—Tb1 2.610 (6)	
C2—C3 1.358 (12) N2—Tb1 2.626 (5)	
C3—C4 1.410 (12) O2—Tb1 2.512 (5)	
C3—H3 0.9300 O3—Tb1 2.578 (5)	
C4—C5 1.382 (13) O4—H4 0.8200	
C4—H4A 0.9300 O5—Tb1 2.449 (5)	
C5—C6 1.373 (11) O5—H1W 0.81 (6)	
C5—H5 0.9300 O5—H2W 0.87 (5)	
C6—N1 1.347 (10) O6—Tb1 2.470 (5)	
C6—C7 1.509 (12) O6—H3W 0.81 (8)	
C7—O3 1.214 (10) O6—H4W 0.81 (10)	
C7—O4 1.303 (10) O7—Tb1 2.517 (5)	
C8—O8 1.237 (8) O9—Tb1 2.533 (5)	
C8—O7 1.284 (8) $O10$ —Tb1 ⁱ 2.493 (4)	
C8—C9 1.510 (9) O11—H5W 0.80 (11)	
C9—N2 1.337 (8) O11—H6W 0.81 (10)	
C9—C10 1.410 (9) O12—H7W 0.81 (7)	
C10—C11 1.393 (9) O12—H8W 0.82 (7)	
C10—H10 0.9300 O13—H11W 0.81 (8)	
C11—C12 1.369 (9) O13—H12W 0.81 (10)	
C11—H11 0.9300 O14—H9W 0.810 (12)	
C12—C13 1.403 (9) O14—H10W 0.81 (9)	
C12—H12 0.9300 Tb1—O10 ⁱⁱ 2.493 (4)	
C13—N2 1.328 (8) Tb1—H2W 2.91 (4)	
O1—C1—O2 125.7 (8) Tb1—O6—H4W 112 (8)	
O1—C1—C2 119.1 (7) H3W—O6—H4W 119 (9)	
O2—C1—C2 115.2 (7) C8—O7—Tb1 125.2 (4)	
N1—C2—C3 121.1 (8) C14—O9—Tb1 125.3 (4)	
N1—C2—C1 116.0 (7) C14—O10—Tb1 ⁱ 143.4 (4)	
C3—C2—C1 122.9 (8) H5W—O11—H6W 118 (11)	
C2—C3—C4 118.7 (9) H7W—O12—H8W 116 (11)	
C2—C3—H3 120.6 H11W—O13—H12W 116 (12)	
C4—C3—H3 120.7 H9W—O14—H10W 116 (10)	
C5—C4—C3 120.1 (9) O5—Tb1—O6 141.19 (17)	
C5—C4—H4A 120.0 O5—Tb1—O10 ⁱⁱ 71.34 (16)	

С3—С4—Н4А	120.0	O6—Tb1—O10 ⁱⁱ	70.77 (16)
C6—C5—C4	117.5 (8)	O5—Tb1—O2	79.49 (18)
С6—С5—Н5	121.3	O6—Tb1—O2	98.0 (2)
С4—С5—Н5	121.2	O10 ⁱⁱ —Tb1—O2	74.20 (16)
N1—C6—C5	121.9 (8)	O5—Tb1—O7	86.65 (18)
N1—C6—C7	115.3 (7)	O6—Tb1—O7	78.3 (2)
C5—C6—C7	122.8 (8)	O10 ⁱⁱ —Tb1—O7	79.02 (16)
O3—C7—O4	123.9 (8)	O2—Tb1—O7	152.60 (16)
O3—C7—C6	119.4 (7)	O5—Tb1—O9	73.05 (17)
O4—C7—C6	116.7 (7)	O6—Tb1—O9	144.46 (17)
O8—C8—O7	126.7 (6)	O10 ⁱⁱ —Tb1—O9	136.75 (15)
O8—C8—C9	118.3 (6)	O2—Tb1—O9	75.91 (15)
O7—C8—C9	115.0 (6)	O7—Tb1—O9	122.43 (14)
N2—C9—C10	122.9 (6)	O5—Tb1—O3	141.05 (17)
N2—C9—C8	115.4 (5)	O6—Tb1—O3	71.56 (17)
C10—C9—C8	121.8 (6)	O10 ⁱⁱ —Tb1—O3	140.01 (16)
C11—C10—C9	117.0 (6)	O2—Tb1—O3	124.28 (17)
C11—C10—H10	121.5	O7—Tb1—O3	80.72 (16)
С9—С10—Н10	121.5	O9—Tb1—O3	83.04 (16)
C12—C11—C10	120.2 (6)	O5—Tb1—N1	133.26 (18)
C12—C11—H11	119.9	O6—Tb1—N1	73.8 (2)
C10—C11—H11	119.9	O10 ⁱⁱ —Tb1—N1	117.83 (17)
C11—C12—C13	118.8 (6)	O2—Tb1—N1	62.20 (16)
C11—C12—H12	120.6	O7—Tb1—N1	139.00 (17)
C13—C12—H12	120.6	O9—Tb1—N1	72.47 (17)
N2—C13—C12	122.3 (6)	O3—Tb1—N1	62.35 (17)
N2—C13—C14	114.2 (5)	O5—Tb1—N2	76.67 (17)
C12—C13—C14	123.4 (6)	O6—Tb1—N2	123.7 (2)
O10—C14—O9	125.7 (6)	O10 ⁱⁱ —Tb1—N2	129.89 (16)
O10-C14-C13	117.6 (6)	O2—Tb1—N2	135.72 (16)
O9—C14—C13	116.7 (6)	O7—Tb1—N2	61.35 (15)
C2—N1—C6	120.7 (7)	O9—Tb1—N2	61.70 (14)
C2—N1—Tb1	119.8 (5)	O3—Tb1—N2	64.91 (16)
C6—N1—Tb1	119.3 (5)	N1—Tb1—N2	112.22 (16)
C13—N2—C9	118.9 (5)	O5—Tb1—H2W	15.9 (5)
C13—N2—Tb1	120.9 (4)	O6—Tb1—H2W	139 (2)
C9—N2—Tb1	119.0 (4)	O10 ¹¹ —Tb1—H2W	69 (2)
C1—O2—Tb1	126.5 (5)	O2—Tb1—H2W	63.6 (5)
C7—O3—Tb1	123.3 (5)	O7—Tb1—H2W	101.4 (7)
C7—O4—H4	109.5	O9—Tb1—H2W	70 (2)
Tb1—O5—H1W	114 (3)	O3—Tb1—H2W	149 (2)
1b1—O5—H2W	114 (3)	NI—IbI—H2W	119.4 (9)
H1W - O5 - H2W	112 (7)	N2—Tb1—H2W	89.0 (16)
1b1—O6—H3W	116 (3)		

Symmetry codes: (i) *x*, -*y*+3/2, *z*+1/2; (ii) *x*, -*y*+3/2, *z*-1/2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
O5—H1W···O11 ⁱⁱⁱ	0.81 (6)	2.08 (5)	2.743 (7)	138 (7)
O6—H3W···O1 ^{iv}	0.81 (8)	1.97 (4)	2.714 (7)	154 (9)
O6—H4W···O9 ⁱⁱ	0.81 (10)	2.05 (7)	2.719 (7)	140 (11)
O11—H5W···O7 ⁱⁱ	0.80 (11)	2.15 (11)	2.913 (7)	159 (11)
O11—H6W···O8 ^v	0.81 (10)	2.10 (10)	2.893 (7)	167 (13)
O14—H9W···O11 ^{vi}	0.810 (12)	2.15 (4)	2.926 (8)	159 (11)
O14—H10W····O8 ^{vii}	0.81 (9)	1.92 (9)	2.690 (7)	157 (11)
O4—H4…O13 ^{viii}	0.82	1.74	2.522 (12)	160

Hydrogen-bond geometry (Å, °)

Symmetry codes: (iii) *x*, *y*, *z*+1; (iv) –*x*+1, *y*+1/2, –*z*+3/2; (ii) *x*, –*y*+3/2, *z*-1/2; (v) –*x*+2, –*y*+2, –*z*+1; (vi) –*x*+1, –*y*+1, –*z*+1; (vii) –*x*+1, *y*-1/2, –*z*+3/2; (viii) *x*, *y*+1, *z*.

Fig. 2